2017년 9월 10일 일요일

#28. Understanding Black-box Predictions via Influence Functions

Tensorflow KR에서 진행하고 있는 논문읽기 모임 PR12에서 발표한 저의 네번째 발표입니다. 이번에는 ICML2017에서 베스트페이퍼상을 받은 "딥러닝의 결과를 어떻게 이해할 수 있는가"에 대한 논문을 리뷰해보았습니다.

딥러닝은 성능은 좋지만 왜 그게 잘되는지 모르는, 그야말로 "블랙박스"와 같은 모델인데요, 이 논문에서는 '만약 A라는 트레이닝 데이터가 없다면 어떤 변화가 일어날까?', 'B라는 테스트 이미지에 가장 결정적인 영향을 주는 트레이닝 데이터는 무엇일까?'와 같은 질문에 대해 influence function이라는 것을 도입해서 해결하려 하였습니다.

"Understanding Black-box Predictions via Influence Functions", Pang Wei Koh and Percy Liang, 2017
[Link] http://proceedings.mlr.press/v70/koh17a.html

[YouTube] https://www.youtube.com/watch?v=xlmlY8WHjkU&index=30&list=PL0oFI08O71gKEXITQ7OG2SCCXkrtid7Fq
[Slides] https://www.slideshare.net/secret/1Bqa2zTPde1Uc4



[비디오]


[슬라이드]


*  테리의 딥러닝 토크
[youtube] https://www.youtube.com/playlist?list=PL0oFI08O71gKEXITQ7OG2SCCXkrtid7Fq 
[facebook] https://www.facebook.com/deeplearningtalk/

* T-Robotics의 글은 facebook과 rss reader로도 받아보실 수 있습니다.

댓글 없음:

댓글 쓰기